
P H Y S I C S W O R L D F E B R U A R Y 2 0 0 556

So what is your favourite programming language? It is a
question that never loses its appeal during coffee breaks
and is sometimes even discussed in more elevated forums
– including this magazine (see Physics World September
2001 p19). However, there is not really a sensible answer
to the question “which language is best?”; most people
seem to agree that the choice of language depends on
the problem.

FORTRAN is excellent for much scientific work,
whereas C and C-based languages such as C++ and C#
are a more natural choice for systems programming.
FORTRAN’s success was largely due to the power of its
input/output (I/O) architecture. It lets you use the same
READ or WRITE statements regardless of the periph-
eral involved – be it a printer or monitor – and whether
you want formatted or unformatted transfers. When
FORTRAN first appeared in 1953, this was an impres-
sive piece of software engineering. It set a standard that
has seldom been approached since by other languages.

C, on the other hand, is sometimes described as a high-
level assembly language. There is some truth in this point
of view because C was developed in the early 1970s to
enable the Unix operating system to be written. Among
other things, successful C programming demands that
you have a detailed grasp of memory layout and address
manipulation, otherwise you will come to a stop the
moment you want a procedure to deliver values back to
your program.

Over the past 40 years I have enjoyed writing in many
languages, but my current interests using Windows API
(application programming interfaces) demand the use
of a C-based language. The fun and enjoyment remain
undiminished, but when I am flying back to my local air-
port I begin to worry a bit, and you might see why in
a minute. C is extraordinarily picky and unforgiving in
some respects – such as manipulating memory addresses
– but equally laid back in others.

To understand why, take the following code fragment,
which I hope both C and non-C programmers will be
able to understand.

int i = 1;
if (i = 2) printf (“stupid”);
if (i == 2.0) printf (“even stupider”);

This compiles on all of my C and C++ compilers;
the constructs are therefore legal. But execution is an-
other matter. The program obediently prints “stupid”
and “even stupider”, but in any half-sane world it should
not do either. In fact, a program like this should not by
rights compile at all.

Why not? Let’s take a moment to examine the code. An
integer i is first declared and initialized to 1, so no prob-
lem here. Then we want to test to see whether i equals 2.
Because it does not, you should not get the “stupid” mes-
sage, but you do. Old C hands, if they are alert, will know,
of course, that this statement does not test whether i
equals 2 at all. It actually sets i to 2; in any case, the condi-
tional is virtually meaningless in C when it is written in
this way.

To test the value of i you have to use the double-equals
sign in the next statement. But because i is now 2 – which
we did not intend – this is also satisfied and you get “even
stupider” printed out. There is also a subtler problem in

the last line, because here we are testing an integer against
a floating-point quantity. C does not bother itself much
about such trivia, but it should! Thus this simple little pro-
gram demonstrates three different problems with C.

Actually, this sort of thing (and there are other prob-
lems of this kind in C as well as other current languages)
worries me. My airport qualms centre on whether there
are hidden bugs of this sort in the air-traffic-control code
when my plane is landing. Just think how easy it would
be for a tired programmer, working to tight deadlines, to
make mistakes such as those above, which might not
be detected until a system is operational. How anyone
can defend the use of a language like this for the millions
of lines of code in a typical safety-critical application,
and/or its operating system, defeats me.

Yet other languages have been around for at least 30
years that would rigorously trap errors such as these when
the program is compiled. Algol-68 was one of the first,
but only a handful of compilers were ever implemented.
One reason was that its designers loftily ignored the re-
quirements of real-world programming by not including
any I/O at all. It therefore, quite rightly, died almost be-
fore it was born. What a pity though – its heart was in the
right place.

Where does all this leave us? Do physicists have a role
to play? Obviously yes, especially those who work with
software. But no matter how good the product, we have
to ensure that it will be taken up and used widely, as
both FORTRAN and C have been for several decades
despite their shortcomings. This requires not only intel-
lectual excellence but an appreciation of what the cus-
tomers (programmers) want. We also have to appreciate
the dynamics of business so that your all-singing, all-
dancing ideas for a new compiler will not bust the com-
pany’s R&D budget while simultaneously appealing to
the marketing department.

It’s all jolly difficult. Does anybody else share these con-
cerns, or am I just getting paranoid in my old age?

Colin Pykett was a physicist in the UK’s Ministry of Defence and now
does freelance research. He is currently developing novel digital
musical-instrument techniques, and making lots of coding
mistakes, e-mail cep@pykett.org.uk
● Readers are invited to submit their own Lateral Thoughts for
possible publication. Articles should be between 900 and
950 words long and can be e-mailed to pwld@iop.org

Speaking with tongues

p h y s i c s w e b . o r g

Just think
how easy it
is for a tired
programmer
to make
mistakes

G
ET

TY
IM

AG
ES

L AT E R A L T H O U G H T S : C O L I N P Y K E T T

